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A mathematically tractable model for flicker noise is presented. The model is
not stationary, but has stationary increments. It behaves like flicker noise when
subjected either to high-pass filtering or to direct spectral measurements. Effects
of a detrending operation on these measurements are investigated. The model
is expressed as a limit of stationary processes. The model of Barnes and Allan
is reviewed, and the performances of the two models are compared.

I. Heuristic Description of the Model

The paradox of flicker noise appears in the study of
certain types of time series, which include oscillator
frequency fluctuations and noise in semiconductors. Ex-
periments that attempt to measure the spectral density
of such time series at low angular Fourier frequencies o
have yielded densities of the order 1/| | or even 1/|w |*,
a > 1 (Refs. 1 and 2). No rolloff from this behavior has
been observed down to frequencies of the order 1 cycle
per year. Since 1/ |% « > 1, is not integrable over the
low-frequency range, there is no stationary process with
such a spectral density.

This situation has been dealt with by two approaches
(Refs. 3-8):

(1) Assume that a stationary formalism can still be
used. Plug 1/} | into formulas as if it were the
spectral density of a stationary process. If the
resulting integrals converge, those results are
meaningful. An objection to this approach is that
it is mathematically unsound.
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(2) Assume that the 1/} w| behavior cuts off in some
way below a frequency € lower than any frequency
of interest. Then use a mathematically sound sta-
tionary formalism and obtain results depending
perhaps on €. Investigate what happens as €— 0.
An objection here is that one has to assume the
existence of something never observed, namely, an
artificially imposed cutoff.

We believe that there really is no cutoff. Hence we
must look to nonstationary processes to find a sound
mathematical model for the phenomenon. This is not to
say that we abandon the idea that flicker noise is pro-
duced by a stationary mechanism; after all, an ordinary
random walk is a nonstationary process, but consists of
the partial sums of a stationary sequence. This idea is
the germ of our model. It is often said that when you
pass a stationary process X(t) with spectral density f(w)
through a perfect integrator, you get a process Y(t) with
spectral density f(w)/w?. However, such a Y is not sta-
tionary, but has stationary increments, i.e., the processes
Ys(t) =Y(t + 8) — Y(¢) are stationary. We will not say
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that Y has spectral density f(0)/o?, but will show that
flw)/w* can be associated with Y in an experimentally
meaningful way.

To make a model for flicker noise, define f(o) = |w]|,
at least for small ». The mathematics of the model will
require a high-frequency rolloff from the 1/| » | behavior.
Accordingly, our model is as follows: Send white noise
through a high-pass filter that attenuates low frequencies
at a rate of 3 dB per octave. This gives a stationary pro-
cess X(t) with spectral density || for small w. Then our
model Y(t) for flicker noise is given by

Yit) = / X(s)ds (1)

We will also add a constant term and a linear drift
term, since such dec components are natural to processes
with stationary increments. Besides, oscillators often ex-
hibit linear frequency drift, with random fluctuations
superimposed.

We will not try to “prove” that the process Y has a
spectral density 1/|o|. There is no such thing. We will
simply subject Y to the same measurements on paper that
have been performed on flicker noise in the laboratory.
These include (1) passages through high-pass filters, and
(2) attempts to measure spectral density directly. If Y
behaves like flicker noise, then to this extent our model
is successful. We can then entertain hopes of finding a
physical mechanism that generates the model.

Fortunately, the calculations are easy to carry out, for
processes with stationary increments are mathematically
tractable. They are an immediate generalization of sta-
tionary processes, and their spectral theory is almost as
simple (Refs. 9, 10, and 11). On the way, we will point
out how the two approaches fit into the picture.

Il. Stationary Processes and Processes with
Stationary Increments

We will be concerned here only with first and second
moment properties of processes. Accordingly, “stationary”
means “weakly stationary,” i.e., that the covariance de-
pends only on time differences.

If X(#), —0 <t < o0, is a continuous-time, complex-
valued, mean-continuous, stationary process with spectral
distribution function F, then
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X(t) = [w exp (iot)dZ{w) (2)

00

where Z is a process with orthogonal increments such
that E| dZ(v)|* = dF(v). The function F is increasing and
bounded on (—w, ). If X has a spectral density f, then
dF(m) = f(w)dw

A stochastic integral

| ot azi

of which Eq. (2) is an example, is defined for functions ¢
such that

/ ® | g(w) [*dF(0) < o 3)

The main property of this integral is

£ ([ saz) (Tw_dZ> = [ Toidre) @

if ¢ and y satisfy Eq. (3).

The theory of stationary processes can be found in
Refs. 9-14. A process Y(#), —o0 <t < w0, is said to have
stationary increments if E[Y(s) — Y(t)] = a(s — t) for
some number «a, and if

E[Y(t + =) = Y(OI[Y( + 7) — Y(t)]
does not depend on ¢. If Y is mean-square differentiable,

then its derivative Y’ is stationary, mean-continuous, and
satisfies

Y(t) — Y(0) = / Y(s) ds

[

the integral being in the mean-square sense. If Y’ is the
process X of Eq. (2), then

Y(t) — Y(O) = ﬁtds‘ /:dZ(m) exp (iu)S)

- / :dZ(w) / ' ds exp (ius)

Y(t) = Y(0) + f e let) 1 )

0 o
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The interchange of orders of integration leading to Eq.
(5) may be carried out because fdF < =; see Rozanov’s
book (Ref. 14, p. 12) for the relevant theorem.

By considering the stationary processes Y(t + 8) — Y(¢),
it can be shown that any mean-continuous process with
stationary increments, differentiable or not, has a repre-
sentation of form (5), where the increasing function F
that corresponds to Z via E |dZ |* = dF no longer need
be bounded, but merely satisfies

* (lF(m) 6
D (6)

This is equivalent to Eq. (3), where ¢(o) = [exp (fot) — 1]
Jiw. For example, if F(o) = o/(2r), then Y(t) — Y(0) has
the same covariances as Brownian motion, This may be
shown by using Eqs. (5) and (4).

More detailed accounts of these processes may be
found in Ref. 11, p. 86 ff., and in Ref. 10.

We will concentrate our attention on the case in which
F has a jump at 0, but elsewhere has a density f. Then Z
has a jump Z, at 0, orthogonal to dZ(») when « = 0. Since
[exp (iwt) — 1]/iw is considered as having the value ¢
when o = 0, the contribution of Z, to Eq. (5) is Z.t. In-
deed, the presence of linear drift is part of the nature of
processes with stationary increments, Removing this jump
from Z, and calling the remaining process again Z, we
write this case of Eq. (5) as

Y(1) = Y(0) + Zt + / Tepl =1 m

o

-0

where E | dZ(v)
tion such that

2 = f(o) dw, f being a nonnegative func-
w flo)
-/—w m do < o (8)

In this situation we will say that Y has the formal spec-
tral density f(w)/»*. The point is that maybe

[ L o ©)

in which case f(v)/w* cannot be the spectral density of
any stationary process. The main purpose of this article
is to make some sense of this terminology.
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Now it is evident what our model for flicker noise shall
be, namely, a process Y with stationary increments hav-
ing a formal spectral density 1/||. This would make
f(o) = | w|, which violates Eq. (8). Accordingly, we de-
mand a 1/] » | behavior only for low frequencies. We will
require that

—_— 1 as 0o—0 (10)

and that f roll off enough at high frequencies to satisfy
Eq. (8). The exact nature of the rolloff will not affect our
results.

Ill. Quadratic Means

We wish to know how these processes behave under
certain measurements. Let X be a stationary process with
spectral density f. We will consider only measurements
of the following form:

2

P= (11)

/ "X h(t)di

oC

where h is a complex-valued “time window” such that

/wlh<t)\dt<w (12)

o0

(We may include 8-functions in h.) Further, we will look
only at the expectation of P, ignoring the problem of find-
ing its variance under assumptions about higher moments
of X. It is a familiar fact that

EP = [m‘H(w)]zf(U))do) (13)

0

where

H(m) = /:mh@') exp <imt>dt (14)

o0

Now suppose that we make the same measurement on
a process Y with stationary increments and a formal spec-
tral density f(w)/0?. Assume Y(0) = 0 for now. Let

2

Q= (15)

/ “Yohedt

o0
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The integral can be transtormed as follows:

/ " Y@hde — Zo / " hat

00 -G

B /: dthlt) / : dz(o) SR LD ~ L

[20]
= [z [ Tdmiolew Gor) 1

00 o | o
_ f v ﬂ“’—)i_w_H(Ol dZ(w) (16)
The condition
F(H\tmh(t).dmw (17)

plus Eq. (8), is sufficient to validate the interchange of
orders of integration leading to Eq. (16). Condition (17)
also makes H differentiable. From Egs. (16), (4), and the
orthogonality of Z, to dZ, we get

. A , f(0)
EQ = |H'(0) |’E | Z, |* +/ | H(w) — H(0) ;zf“’ do
(18)
valid when Y(0) = 0 (or, what is the same, if h is applied
to Y(t) — Y(0) ). The formal spectral density f(w)/® ap-
pears in somewhat the same role as spectral density f(o)
does in Eq. (13), the analogous formula for stationary

processes. The next two sections examine some special
cases of these measurements.

IV. High-Pass Filters

We say that a time window h satisfying Eq. (17) is a
high-pass filter if H(0) = 0, ie,

/ “ndt =0 (19)

In this situation, we no longer need to require Y(0) = 0,
and Eq. (18) becomes

EQ = [H'(0)

2E1Zl,§2+[:qﬂ(w)|2@dw

w

(20)

The first term of Eq. (20) is due to linear drift. The
second term is exactly what we would get if a stationary
process with spectral density f(w)/w® were subjected to
the same measurement. This is what the first approach
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(1) of Section I gives. Of course, if Eq. (9) holds, there
is no such stationary process. Moreover, if h is not high-
pass, then approach (1) fails, for the integral in Eq. (20)
diverges.

In the study of oscillator stability, Y(#) is the frequency
of an oscillator at time £, relative to some nominal aver-
age frequency. To measure the instability of Y, one often
uses a family of high-pass filters

he(t) = — & (i)

depending on an integration-time parameter -. Here,
k(x) is a fixed high-pass filter function of dimensionless
time x. Perhaps the simplest of these is given by

k(x) = — 1/2, 0<x <l
= 1/2%, l<x<2
= 0, otherwise

The corresponding Q is called the Allan variance. It is
the sample variance of two successive averages over ad-
jacent time intervals. Let

K(y) = f " exp (izyk(x)dx

o0

Then

B0 = #|ROFE|Z b+ [ ke L2 a

(21)
For the flicker noise case, let us assume for simplicity

that f() = || for | | < w:. (Actually, conditions (8) and
(10) are sufficient.) The integral in Eq. (21) becomes

w7 d ©
./~w T \ K(y) ‘2 TZ—/!Z]— +/\1»I><u { K(wr) ‘2 f((u) do

If K(y) tends to O fast enough as y — o, this expression
tends to

f Ky | (22)
_ ly]

o

as r—> . In the case of Allan variance, this integral is
® 1 1
it — —_— f
ﬁ sin‘ 5y 3 dy = 4log 2
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A standard test for the presence of flicker noise is the
leveling off of the Allan variance to a nonzero limit as =
gets large. Since K’(0) 5% 0 in this case, the linear drift
term in Eq. (21) grows like +2. Thus it is obviously neces-
sary to remove linear drift from Y before making the
measurement, and this is in fact done (Ref. 5). Of course,
this surgery cannot be performed without damaging the
second term of Eq. (21); we will examine this situation
in detail in Section VI. This difficulty can be avoided by
using a filter h such that H'(0) = 0, i.e.,

f th(t)dt — 0 (23)
Then the linear drift term vanishes. When Barnes (Ref.
4) considers the third difference of the phase of an oscil-
lator, he is using such a filter.

V. Spectral Estimates

We wish to see what happens when we perform ex-
periments on our model that are designed to measure
spectral density f of a stationary process X. One estimate
of f at a chosen frequency o, is a modified periodogram
(Refs. 15 and 16). Let k be an integrable function on
(0,1). The estimate of f(w,) using an integration time of

- is
/:X@M<€><ﬁp(—um)ﬁ
(24)

To get stable estimates of f(w,) we would have to average
I-{w) over a band of frequencies that is wide compared
with 1/7. We will not do this here.

2

1

IT(w0> = 2—71_;'

Let

K(y) = ﬁl exp (ixy)k(x)dx (25)

The measurement I{w,) is of the Eq. (11) type. By Eq.
(13),

T

EL»(w“) - Z A: ‘ K((m - w(,) T) ‘gf(w)dw (26)

Assume that k is square-integrable, and that f is a
bounded, continuous function on (— %, ). Then
1

EIT(wO) - f(wo)/; ‘ k(x) de
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as r— oo; in other words, I+{w,) is an asymptotically un-
biased estimate of f(w,) { |k |2.

Let J+(w,) be defined as in Eq. (24), except that X is
replaced by a process Y with stationary increments and

a formal spectral density f(o)/o®. Assume again that
Y(0) = 0. By Eq. (18),

1
E]1(w0) = g 7 ‘ K'(_wOT) IzE ‘ Zo

2

+ °°1 K((m — ) 'r) — K(—wor) 2 @ do

2

27)

2 |,

Suppose that K(y) and K'(y) tend to O faster than |y |-*2
as |y| — . As r—> oo, the linear drift term goes to 0.
In the integral, the 1/ divergence is cancelled by the
|-+ |2 factor. For o near o, the term K(—w,r) is insig-
nificant compared to K((o — w) 7). As a result, when
r— o0, expression (27) behaves like (26), this time pick-
ing off the value f(w)/w} of the formal spectral density.
For flicker noise we set f(w) ~ | o | as — 0, and we see
again how the model manages to masquerade as a non-
existent stationary process with spectral density ~ 1/ |
for small w.

Here is a precise statement about the behavior of
EJ+(wo): Let k be an absolutely continuous function on
[0,1] such that k(0) = k(1) = 0, and let K be its Fourier
transform Eq. (25). Let f be a continuous function satis-
fying Eq. (8). Then for o,40, the second term of Eq.

(27) tends to
&:’,}Z fl | k(x) |? dx (28)

asrt—> 0.

Proof: The conditions on k imply

o =o{ k).

forn=0,1,2,---.

as |y |— o (29)

It will be enough to prove the result when o, > 0. We
break up the integral in Eq. (27) as follows:

T -1/7 1/7T wy/2 3wy /2 0
EOREY MR NS e
™ - -1/7 /7 wy/2 300 /2

=L +L+I,+1,+1,
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We will show that I, tends to Eq. (28) as r— «, and
the other I; tend to 0. Let g = w,r, and let

floo(1 + x))

€0 =" a T

Then

/2 d
= [ - Ko e (L) 3

q/2

:/ +/ (30)
—m m<lyl<q/2

As g = o, the first integral in Eq. (30) tends to

4 [ixwra By

-m

The second integral in Eq. (30) is less than

Zmaxfeta) s x| <z (| KOy + o K~

By choosing m large we can make this expression as
small as we like for all g sufficiently large, and can also
make Eq. (31) as close as we like to

g(0) [~
.

| K(y) |* dy :%u?ﬂl]K(x) | dx

~cQ

This establishes the limiting behavior of I,.

To estimate I, we simply observe

| K( (0 — wo)7) — K(—wor) 2 = o<i>

T

as r— oo, uniformly for « < 0. Hence

(e

= 0(—1-> O(x) = o(1)

T

The estimates for I, and I; are similar.

Only I, remains. By a version of the mean value the-
orem for complex-valued functions of a real variable,

fK(w‘r = wor) — K(—wy7) lz < o7t ‘ K’(c) }2
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for some number ¢ between or — wor and —wyr. If
0| <1/r and 7 2> 2/w,, then ¢ < —wer/2 and | K/(c) |?
= 0(1/7?). Therefore

L<o)r | fo)do = o(1)

~1/T

The proof is complete.

When f(0) = 0, as in the flicker noise model, we can
replace o by O in Eq. (29). Then even a boxcar function
will serve for k. Of course, to make the linear drift term
in Eq. (27) tend to 0 we need K'(y) = o(1/|y |)**. This
problem goes away when we remove drift before doing
the spectral analysis; we treat this situation in the next
section.

VI. Removal of Linear Trends

Before taking the kinds of measurements we have de-
scribed, it is common practice to fit a linear trend to the
data and subtract it off. Measurements are then taken on
the residual data. In spectral measurements this avoids
interaction of dc components with minor lobes of the
spectral window.

Least-squares fitting on an interval —1/2- <t < 1/2~
is convenient for us here. Given a signal u(t), we produce
a residual signal

u(t) = u(t) — a, — ast

where

1 Yar 12 Yot
a, = 7/ u(t)dt, a, =— tu(t)dt

3
Yor T J-ter

Then
Yar Yot
/ w,(t)dt = 0, / tu(t)dt = 0 (32)
~Yar ~Yer
and for any two given signals u and v,

/ o)t = / )0, (33)

et =ler

Let Y be the process of Eq. (7). We will look at quad-
ratic means Q, of the reduced process Y,(t):

2

Q.= . _[ - Y, (t)h(t)dt

Yt
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If h is integrable on [ —+/2, +/2],

f VﬂY,(t)h(t)dt = / %TY(t)h,,(t)dt (34)
Yo J-Yat

Let

H{o) = / th(t) exp (iwt)dt

~Yar

H ., (0) = / leu.(t) exp (fwt)dt (35)

Vet

Because of Eq. (32), not only is h, a high-pass filter,
H,(0) = 0, but also H/(0) = 0. Hence, by Eq. (20),

EQ, / ) do (36)
Take the situation

h(t) = é k (i>

where k is a function with residual %, defined with re-
spect to the interval [ —1/2; 1/2]. Then

h,(t) = é k. (%)

and Eq. (21) gives

do (37)

EQ, = / | K (wr) 2
where
p%:1
Kfo) = [ olo) exp (i)

For the flicker noise case, f(»)
to

~ 5 w| as o —> 0, EQ, tends

o d
[w | Ki(y) |2 | yy‘

as 7— o0, and there is no linear drift term to interfere
with our observations. This happens whether or not k is
a high-pass filter.

Before we look at spectral measurements on the re-

duced process Y,, we need a formula for H, in terms of
H. By Egs. (35) and (33),
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Yar

h(t)e(wst) dt

~laT

H»,(w) =

where e(w,t) is the reduced form of the function exp (iwt)
on —1/2 <t < /2. We calculate

e(w,t) = exp (fwt) — ¢o(0r/2) — ¢1(wr/2)iwt
where
¢o<x) = sir;x . d)l(x) e S_EIB_X__EX_C(ES_E_

Therefore the desired formula is

H,(0) = H(0) — ¢olor/2)H(0) — ¢1(wr/2)wH’(0)

(38)
We apply Eqgs. (36) and (38) to the spectral estimate

J=(vo) of Section V, where Y is replaced by Y,, and k is
n [—1/2, 1/2] instead of [0,1]. We get

E]T wo = / ‘ K w - wo d)(,(u)'r/Q) ( w(ﬂ')

— $1(0r/2)orK(—wor) |2 ffj do (39)

Although this is messier than Eq. (27), it is actually
better behaved. There is no linear drift term. When
|or| > 1, the perturbing terms in (39) go to 0 at least
as fast as the old K(—wor), and even faster when o is
bounded away from 0. In the region |or| <1, the inte-
grand of (39) is like that of (27) except for the extra
terms

(1~ qS‘O(w'r/Q) )K( - wor) - ¢1<wr/2)w7 K’( —‘0)07')

which are both |w|o(1)as7— e, |or| <1. Hence this
part of the integral behaves as well as before.

We conclude that the reduced EJ+(w,) tends to the right
side of Eq. (28). In general, the detrending operation
enhances the ability of our measurements to provide in-
formation about the formal spectral density f(v)/w? of a
process with stationary increments.

VIl. Approximation by Stationary Processes

The purpose of this section is to give a concrete inter-
pretation of the method of cutoffs, the second approach
of Section 1. Rather than creating out of nothing a sta-
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tionary process with spectral density that cuts off below
o = €, we will generate one by sending the process Y of
Eq. (7) through a high-pass filter. This will give a sta-
tionary process X which in a certain sense converges to
Y as €= 0.

We will need to assume that the linear drift term Zt
is absent from Y(t). Take a high-pass filter with impulse
response

he(t) = 8(t) — ek(et)
where € > 0 and k is a function such that

) k(x)dx =1

0

/_:(l+[x1)|k(x)}dx<w,[

and § is the Dirac delta. This time, let

K = [ exp (~iny) Ko

o0

a bounded, differentiable function that tends to 0 as
|y|— . Define the process Xe by

Xd(t) = / " Y(s)he(t — s)ds

o0

Then Eq. (16) gives

i — K w/ €
X () 2/_ exp (iwt)l—iw(—-/—) dZ(w)

00

Hence, X. is a stationary process with spectral density

51 - K<—€-> o) (40)

0]

a cutoff version of f(v)/w* which tends to f(w)/w? as e— 0.
If Eq. (9) holds, the random variables X(¢), t fixed, e—> 0,
do not converge to anything, since E|X(t)[*— « as
e€— 0. Nevertheless, for each ¢t we do have

X(t) — X(0)—> Y(t) — Y(0)

in mean-square, as € — 0.

Proof: Let AY(t) = Y(t) — Y(0), and similarly for X..

Then
[ () e
(41)
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Equations (41), (7), and (4) give

p|av) — axio = [ (Z2Y |k (2)) s
Since
(E52) 0+ <
we have
Blave - ax <@+ [ -k(2) Lk a
(42)

which, by Lebesgue’s dominated convergence theorem,
tends to 0 as €e— 0,

If his a time window satisfying Eq. (17), then (42)
implies
/ AX(t)h(t)dt — / AY(6)h(t)dt (43)

in mean-square, as €— 0. If h is also a high-pass filter,
then

/ " X h(t)dt— f " Yoh(t)dt

so that in this case, the method of cutoffs fits smoothly
into our model.

Strictly speaking, we have not expressed AY(f) as a
limit of stationary processes, but rather as the limit of
AX(t), which is not stationary but has stationary incre-
ments [and a formal spectral density (Eq. 40)]. The sta-
tionary process X, € very small, would not be a good
model for flicker noise because in this case E | X (t) | is
large for all . An appropriate model might be AX, but
then we might as well use Y, which does not have an
extra parameter € to make calculations messier.

VIIl. The Barnes-Allan Model

In 1966, Barnes and Allan (Ref. 17) exhibited a flicker
noise model and calculated its Allan variance. (See Sec-
tion IV for a definition.) We have examined the behavior
of our own model under a general class of measurements,
and will now do the same for the Barnes—Allan model.
The details of the derivations will be omitted.
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Their model for the frequency @'(t) of an oscillator
(@ is the phase) is given by

(t) = _\}?/Ot -(t—_—_}w dW (u), t>0
(44)

where dW is white noise. Actually, this stochastic integral
does not exist, since
/ t du
-
o t—u

Nevertheless, Eq. (44) defines a generalized process; that
is, we can give a meaning to

/ " w(Ohp)de (45)

for suitable time windows A by formally plugging Eq.
(44) into (43) and reversing orders of integration. (The
real reason that @ is not an ordinary process is that there
is no high-frequency cutoff of the 1/| » | spectral behavior.)

From here on, let A be of bounded variation and equal
to 0 outside some interval [0,56]. Let R be the square of
the absolute value of Eq. (45). We are able to show that

4i *® e , do
ER_Qw[JH(w) H*(o) | o] (46)
where H is given by (14) and
(o) = [ o ()
1

p(§) = s

Since [p = 1, H¥(o) is a weighted average of H. Formula
(46) is analogous to (18). In our own model Y, we set
Z, = 0and f(0) = | 0| g(o), where g(v) > 1 as o~ 0. Then
(18) becomes

EQ = / V@) - HO) el T (48)

Since Y has stationary increments, the starting time T
of measurements does not matter, provided we replace
Y(t) — Y(0) by Y(T +¢) — Y(T). This is not the case for
9/, as Barnes and Allan recognize. Therefore we first con-
sider h of form
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o= (=0)

where k is not necessarily high-pass. If we set Y(T) =0,
then EQ depends only on =, namely,

po= [Tk -xope(Y) )

T

and

e d
EQ—>/_w {K(y)—K(O)PF}‘- as r— oo
(50)

On the other hand, ER depends only on p = T/r, and
we can show that

l 0

d
ER= - | Ky ~KAw)l 1, asp—0

(51)
° d
ER—»%/ | K(y) |2 I_yy—\ asp— o (52)

If K is high-pass, K(0) =0, then all these limits are
finite. For the special case of Allan variance, Barnes and
Allan keep r fixed and let T— o since (Ref. 17) “flicker
noise is normally observed on equipment which has been
operating for long periods of time.” From Egs. (52) and
(50), we see that 2= limy . . ER = lim: » EQ. Thus,
27ER and EQ are almost equal for large r and T >> r.
If we keep T fixed and let r — oo, then EQ approaches
the right side of (50), whereas ER approaches the right
side of (51).

If K is not high-pass, K(0) % 0, then the right sides of
(50) and (52) are infinite, whereas (51) is still finite. If =
is large and T >>> r, then EQ and ER are both large. If
T is fixed and r— o, then EQ — «, while ER remains
finite. Because of the ambiguity of T, the Barnes—Allan
model cannot be used to predict the dependence of R
on r if K(0) 54 0, while (49) does exactly that for Q. In
fact, it is easy to see that EQ grows like log r.

We have also calculated the expected modified peri-
odogram of @ for the case T = 0. This is the expectation
of the expression (24) with X replaced by . If k is of
bounded variation on [0,1], an effort as in Section V
shows that the expected modified periodogram tends to

1 1
i k(x) |2dx
2w|wo‘ﬁ | K(x)
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as | w, | 7— oo. Thus, the Barnes—Allan model does display
a 1/]w| behavior when subjected to a spectral measure-
ment.

The two models Y and @ are closely related. Formulas
(46) and (48) display the relationship in the spectral
domain. It is possible to generate a formula for Y(¢) in
the time domain by passing white noise through a cer-
tain realizable filter, then integrating. The resulting ex-
pression splits naturally into two parts, one of which
resembles (44). This part is actually a version of the
Barnes—Allan model that cuts off the 1/|«| behavior at
high frequencies.

IX. Future Prospects

We see two directions for further work. First of all, we
would like to make more comparisons of the behavior of
actual flicker noise with the behavior of our model Y and

the Barnes—Allan model &. These models already agree
with the experiments involving high-pass filter averaging
and direct measurements of spectral density, but &’ has
some difficulty predicting the result of non-high-pass filter
averages. Averaging experiments could be done on flicker
noise data to search for the logarithmic dependence on
integration time that Eq. (49) predicts for Y.

Secondly, it would be desirable to search for physical
mechanisms that could generate either model Y or .
Since we have described only second-moment properties
of these models, each model can be realized in a variety
of ways. Instead of using Brownian motion to generate
the model, we can start with other processes with ortho-
gonal increments. For example, if we started with a suit-
ably modified Poisson process, we would get some form
of nonstationary shot noise. Such a noise might occur in
the frequency of an oscillator subject to infrequent but
sudden random disturbances.
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